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Abstract

Income distributions are derived from the given Gini coefficients using the
entropy maximization method (Ryu, 1993). To check the accuracy of this
method, the approximated income distribution using the Gini coefficient is
compared with the true distribution (U.S. 1983 CPS data). All income
distributions will be shown to have relatively the same shapes except the
starting points given by the Gini coefficients. Using the derived share
function, the Lorenz dominance effects and Wolfson’s scalar polarization
index are analyzed.
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1. Introduction

The choice of functional form of an income distribution is important for
income inequality analysis. Once the underlying income distributions are well
approximated with the maximum entropy method, three suggestions can be
made. 1) The Lorenz dominance effects (two different Lorenz curves cross at
one point) may not be observed for the cross sectional comparison of 57
countries. 2) Estaban and Ray (1994) and Wolfson (1994) introduced the scalar
polarization index. If the Gini coefficient and polarization index move along the
opposite directions for certain income changes then the Gini coefficient will
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indicate improvement while the scalar polarization index will indicate a worsening
of income distributions. Such opposite direction movements and contradictory
implications are possible only if the income share function has two or more
maximum values; however, the standard shape of income share functions derived
in this paper has only one maximum value and both indices will move along the
same direction. Thus, the scalar polarization index is a theoretical proposition
but not needed to explain real world income distribution changes. 3) The Gini
coefficient was considered as a poor inequality measure to describe the income
changes of the poorest group; however, the income distribution derived in this
paper using only the Gini coefficient described the income shares of the poorest
group fairly well. Thus, the Gini coefficient is a more powerful tool than
previously considered.

Mathematical procedures taken in this paper are:

1) The first moment of income distribution can be derived from the given Gini
coefficient.

2) The income distribution can be derived from the given first moment using the
maximum entropy method.

3) Higher order moments can be estimated from the first moment with very high
R? values using the cross sectional quintile data of 57 countries.

4) Given higher moments, a better approximation of the income distribution
function is possible using the maximum entropy method.

5) Compare the income distribution functions derived using only the Gini
coefficient and derived higher moments with the true distribution derived
from population data.

6) Lorenz dominance effect (two Lorenz curves are crossing at one point) may
not be observed if all income distributions have relatively the same standard
shape except the different starting points described by the Gini coefficients.

7) The scalar polarization index introduced by Wolfson (1994) is good only for
the theoretical imagination. The Lorenz curves derived in this paper do not
meet or come closer near the center point. Therefore, the scalar
polarization index and the Gini coefficient move along the same direction.

8) The share function derived by the maximum entropy method describes
income shares of the poorest group fairly well.

79



Looking for the Standard Shape of Income Distributions

2. The first moment of income distribution can be
derived from the given Gini coefficient.

The Lorenz curve is defined as
L Efs(z’)dz’ €))
0

where s(z) is the share function and the coordinate z is the population income
coordinate with z[J 0.005 (the center point of the domain between zero and 0.01)
for the poorest 100 group and z[J 0.995 for the richest 100 group (the center point
of the domain between 0.99 and 1.00).

Consider the partial integration of

1 1
fzdL =zL(2); *J’L (2)dz=1—g
0 0

1
where g= fL (2)dz
0

Since
dL(z)=s(z)dz
The mean of the share function is

1
_|_
m=[zs () dz=1-g=LECL ©)
0

Knowledge of the GINI is equivalent to knowledge of the first moment of the
true share function. This result is also reported in Yitzhaki (1998). It means
11 =0.5 if GINIO 0 and ;=1 if GINIO 1.

3. The income distribution can be derived from the
given first moment.

Solving an entropy maximization problem as stated in Ryu (1993)
Max, W= —fs (z)logs(z)dz 3)
satisfying

fzs (2)dz=4, 4)
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the Lagrangian method produces

s(z)=expla+bz] :[

] -exp[bz] )

eb—1
where the normalization condition of the share function is used to remove a.
Now the first moment condition (4) produces,

1
b 1+ GINI
w=——||zexplbzldz=——F—" (6)
=l M 2
Since the integration is a function of b, 4(b) is used to label y;.
_ 1, e  1+GINI

Then b approaches zero if the GINIO 0 and b approaches infinity if the GINIO 1.
Since the LHS of (7) is a monotonic increasing function, a given Gini coefficient
uniquely determines b and the share function s(z).

Fig.1 ME shares from Gini only and the Observed Shares
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The above Fig.1 compares empirical U.S. 1983 CPS data with approximated
shares function derived using (5) and the Gini coefficient only. For the poor and
rich groups, the approximation was inaccurate.
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4. Higher order moments of share function can be
estimated from the first moment with high R* values.

The quintile income shares of 57 countries are reported in the World
Development Report (2011). The higher moments of the share function are
calculated using the quintile shares. The domain of the discrete share function
is represented with the following notation. The domain of the first quintile share
s; of z=[0,0.2] is represented with its center point (z=0.1). Similarly, the
second share s, of z=[0.2, 0.4] is represented with its center point (z=0.3) and,
s; of z=10.8,1] is represented with its center point (z=0.9). The Lorenz
curves can be made of quintile shares with kinked lines or with a quadratic

approximation.
Ly=L(z=0)=0, :point A
Li=L(z=0.2)=s, :point B
L,=L(z=04)=s,+s,, :point C ®)
Li=L(z=0.6) =s,+s,+s;,, :point D
L,=L(z=0.8)=s;+5s,+55+s5, :point E
L;=L(z=1.0)=s,+s,+ 53+ 5,+ 55 :point F

0.2 0.4

Now approximate the Lorenz curve with a quadratic function that passes the
points A, B, and C. Introduce a second order polynomial series,

L(z)=az+a,z"%

Let Az=0.2.
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Li—Ly=s,=a,(Az) +a,(Az)*

Ly—Lo=s,+8,=a,(2A2) +a,(2Az)*
Similarly, for points B, C, and D, use

L(z)=L,+b,(z—02)+by,(z—0.2)*

where point B is considered as a new origin,

Ly—Li=s,=b,(Az) + b,(Az)*

Ly—Ly=s$;+ 3= b, (2A2) + by(2A2)*
Similarly, for C, D, and E, use

L(z)=Ly+c,(z—0.4) +¢,(z—0.4)*

Li—Ly=s3=¢,(Az) +¢,(Az)*
L4_L2: 83“!_ Sy—C; (2AZ) + Cz(2AZ)2
Similarly, for D, E, and F, use

L(z)=Ls;+d;(z—0.6) +dy(z—0.6)*

L4*L3283:d1<AZ> +d2(AZ>2
L5*L3:S4+S5:d1 (2AZ> +d2(2AZ>2
Find a; and a, from points A, B, and C. From (9),

{Az (Az)Q}[al}_[ Sy }
20z (2A2)%|la, S 1Sy
[alJ_ 1 [4&2 31A2(31+32):|_|: 7.58,—2.58; }
a; | 2(A2) | —2s;+(s;+sy) | | —125s,+125s,

|:b1:| - |: 7.582_2.533 :| |:C1:| - |: 7.583_2.584 :|
by| | —125s,+125s5 ) ey | | —125s3+125s, )
|:d1:| - |: 7.584_2.535 :|
d,| | —12.5s,+12.5s;

Similarly,

®

(10)

(11)

(12)

(13)

(14)
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For z;=0.005, 0.015, ...,0.195, L(z)=a,z+ayz?,
s(z) =L (z;+0.005) —L(z;—0.005) =0.01a; +0.02a,z; (15)
Similarly for z;=0.205, 0.215, ..., 0.395,
L(2)=L(z=02)+b,(z—0.2) + b,(z—0.2)%,
S(2) =L (2;40.005) — L (z,—0.005) =0.015,+0.02b,(z,—0.2)  (16)

A similar calculation also allows for the share functions of remaining positions to
be found as well as for moments to be derived. For notational convenience, let
z; mean the domain of z= [0, 0.01] which is represented with z; =0.005, z, means
the domain of z=[0.01, 0.02] that is represented with z,=0.015. Let s,=s(z})
and s,=s(z,) means shares for these regions.
100 100 100 100
ﬂlzizlzisi ﬂZEZ_ZlZiZSi /13EZ_ZIZ?Si :“451_212?31'

100 100 100 100
_\'_5 — N6 N7 A ol
:“5:.2131‘ S ,%ZZIZZ- S MZZIZZ-% ﬂszzlzisi a7
1= 1= 1= 1=

Least squares estimations are possible for the higher moments with respect to
the first moment for the 57 countries.

fts=—0.28463 5797+ 1.2006 (155141 R*=0.9981
115 = —0.38878 4905 + 1.2215 (1069141 R*=0.9952
(4= —0.42606 115 + 11854 55,49 111 R*=0.9925
fts=—0.43414 4191+ 11300 517111 R*=0.9904 (18)
fts=—0.42845( 4015+ 1.0694 (605,111 R*=0.9886
(7= 041617 _sg91) + 1.0094 55,03 111 R*=0.9872

Ug=— — 0.40088 (—3801) +0.95235 (62.22) 11 RZ =0.9860

The numbers inside the parentheses are the standard deviations. To check the
accuracy of the above regression of higher moments with respect to the first
moment, compare predicted higher moments with the estimated moments from
the percentile data
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Fig.2 Comparison of estimated second moment
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Estimated sixth moment

Estimated eighth moment

Fig. 6 Comparion of estimated sixth moment
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with observed sixth moment
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Fig.8 Comparison of estimated eighth moment
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To check the accuracy of the above estimation method, compare the observed
moments of U.S. 1983 CPS data with estimated moments derived with the first

moment and regression equations (18).

In Table 1 below, the second column

shows observed moments based on the whole U.S. 1983 CPS data. Third column
is estimated using the observed first moment of U.S. 1983 CPS data and the
regression method (18).
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Table 1: Comparison of estimated moments with the observed moment

Moments Observed Estimated Momep‘['s

Moments Use (18) and Gini
First Moment 0.6947837 0.6947837
Second Moment 0.5447280 0.5495273
Third Moment 0.4533559 0.4598983
Fourth Moment 0.3910719 0.3975366
Fifth Moment 0.3455222 0.3509656
Sixth Moment 0.3105631 0.3145517
Seventh Moment 0.2827690 0.2851447
Eighth Moment 0.2600679 0.2607973

5. Estimation of the Gini coefficient using only the
quintile data.

Suppose the Gini coefficient is not known for a certain country, but assume
the quintile income share data is given. Then the Gini coefficient can be
estimated with the quadratic approximation of Lorenz curve. Thus, the above
share function can be derived with a good starting point though the Gini
coefficient is not known.

The area under the Lorenz curves for the intervals z=1[0.0,0.2] and
z=10.2,0.4] are

02 02
fL () dz= I(alz + a222> dz=NAz [31/2 — <32— sl>/12] (19
0 0

04 04 Az

(3£L (z)dZZOJ;(alz—i—ang)dz: ﬁ[l3sl+582] (20)

where parameters a; and a, are estimated in (14) and Az=0.2.
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Fig.9 Continuous approximation for the given quintile data

L(z)

%[1%1 +5s2]

Az[s;/2-(s,—s)/12] 0.2 0.4

The difference between the kinked Lorenz curve and curved Lorenz curve
for points A, B, and C is Az(s,—s,)/12 for both intervals z=[0,0.2] and
z=10.2,0.4].

Similar calculation shows the difference between the kinked Lorenz curve
and curved Lorenz curve for points B, C and D is AZ<83—82> /12 for both
intervals z=1[0.2,0.4] and z=1[04,0.6]. The area difference is different
depending on which quadratic equation was chosen for the interval z=[0.2, 0.4].
There are two quadratic equations, one from the points A, B, C and another one
from points B, D, C. The average value of two area differences will be taken for
actual calculation of departure for BC. Similar calculations can be done for
intervals CD and DE. The points D, E, and F are defined in (8).

Therefore the difference in area for interval AB is

D12A2<82*31>/12
The difference in area for interval BC is

D,— ?; <32_31> er <S3_32> 1)

Therefore the difference in area for interval CD is

e 2 [ () (5 -

Therefore the difference in area for interval DE is
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A {(8483)%584)}

T 2

(23)
Therefore the difference in area for interval EF is

Ds= % (s5—51) (24)

The addition of corrected area is

D+ D,+ D+ D+ D= % [—1.55,+0.55,—0.55,4 1.5s; ] (25)
The Gini coefficient with the kinked Lorenz curve is
Gini=2(0.2s;+0.4s,+0.653+0.8s,+55) — 1.2 (26)

The Gini coefficient with the smooth corrected Lorenz curve with correction (25)
18
Gini=0.4s,+0.8s,+ 1255+ 1.65,+ 255 — 1.2+$[—331 +5,—8,+ 355
) 27)
ZW[2131+4932+7283+9534+ 1235 | — 1.2

For U.S. 1983 CPS data with the 100 percentile, true Gini coefficient with 100
data 1s 0.389567, with quintile data using the above smoothed curve produced
Gini[J 0.382340, and the kinked Lorenz curve produced Ginid 0.3657320. The
quadratic approximation produced a good result.

6. Given higher moments, a better approximation of
income distribution function can be derived

Suppose we obtain approximating densities by choosing a density that
maximizes entropy (subject to moment side conditions) and solves the following
problem. This section is a reproduction of Ryu (1993).

max, W= — [ f(x)log f(x)dx (28)
satisfying

Jamfo dx=p,, m=0,1,....N (29)
with the u,, having known values. Once the model moments yq,..., Ly are known,

the problem of (28) becomes a mathematical optimization problem subject to
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given side conditions. We shall assume that a solution exists to this problem.
See Mead and Papanicolaou (1984) for the existence conditions.
The Lagrangian method produces a maximum entropy distribution

N
f)=exp| ) ¢, "] satisfying [x"f(0)dx=u,,, m=0,1,...,N. (30)
n=0

The parameters of f(x) can be determined from the moment restriction
conditions. There is another interpretation for (30). We can think of it as a
polynomial expansion of the logarithmic pdf and we determine the coefficients
¢, s mechanically from the given moments r,,.

Theorem: Suppose a solution exists for the problem stated in (30). The
following method provides an analytic solution for the model parameters
{cp,...,cy) in terms of the known model moments K,...,1oy. First, we shall find
an N by 1 vector ¢= {cy,...,cy} from the following relationship and ¢, will be
determined by the normalization of the density functions.

Be=d — c¢=B \d

Fig.10 Comparison of observed with approximated share functions
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where the N x N square matrix B, and the N x1 vectors ¢ and d are defined as
follows. If the domain of x is finite, we can always transform it to [0, 1].

anz_mn[ﬂern_:uern*l] where mn=1...N
c/: (017"'101\])) and

d,= [m(m+ 1>ﬂm—m2,um,1] where m=1,...,N.

Proof of theorem: See Ryu (1993) and Aroian (1948).

Table 2: Comparison of estimated Lorenz curves with observed Lorenz curve

. Observed | Lorenz from Gini | Lorenz from est. Singh- Kakwani-
Lorenz only use (18) moments (17) Maddala Podder

0.01 0.26 E-03 0.26 E-02 0.13E-02 0.68 E-03 0.19E-02
0.02 0.98E-03 0.52E-02 0.27E-02 0.19E-02 0.39E-02
0.03 0.20E-02 0.79E-02 0.42 E-02 0.34E-02 0.60E-02
0.04 0.33E-02 0.11E-01 0.58 E-02 0.52E-02 0.81E-02
0.05 0.48 E-02 0.13E-01 0.75E-02 0.72E-02 0.10E-01
0.06 0.66 E-02 0.16 E-01 0.92E-02 0.94E-02 0.13E-01
0.07 0.85E-02 0.19E-01 0.11E-01 0.12E-01 0.15E-01
0.08 0.11E-01 0.22E-01 0.13E-01 0.15E-01 0.17E-01
0.09 0.13E-01 0.25E-01 0.15E-01 0.17E-01 0.20E-01
0.10 0.15E-01 0.28 E-01 0.17E-01 0.20E-01 0.22E-01
0.20 0.48E-01 0.63E-01 0.47E-01 0.57E-01 0.53E-01
0.30 0.94E-01 0.11 0.92E-01 0.11 0.94E-01
0.40 0.15 0.16 0.15 0.17 0.15
0.50 0.23 0.23 0.23 0.24 0.22
0.60 0.32 0.31 0.32 0.33 0.31
0.70 0.43 0.41 0.43 0.43 0.43
0.80 0.56 0.55 0.56 0.55 0.57
0.90 0.73 0.73 0.73 0.71 0.76
0.91 0.75 0.75 0.75 0.73 0.78
0.92 0.77 0.78 0.77 0.75 0.81
0.93 0.79 0.80 0.79 0.77 0.83
0.94 0.82 0.82 0.82 0.79 0.85
0.95 0.84 0.85 0.84 0.82 0.87
0.96 0.87 0.83 0.87 0.84 0.90
0.97 0.89 0.91 0.90 0.87 0.92
0.98 0.92 0.94 0.93 0.90 0.95
0.99 0.96 0.97 0.96 0.94 0.97
1.00 1 1 1 1 1
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If observed 8 moments are available, it produces better accuracy; however, using

only the Gini coefficient and the regression equation (18) also produced a good

approximation. To check the performance of the above Lorenz curve, derived

result is compared with those of the other well known Lorenz curve derivations.
The Singh and Maddala (1976) Lorenz curve is

atl

L(u):[l—u—z)ﬁ} ‘ 0<z<1, a>0

The Kakwani and Podder (1973) Lorenz curve is
L(z)=zexpl—h(1—2)], h>0

The parameters a and 2 are determined such that the sum of the squared
residuals are minimized.

Singh-Maddala (1976) and Kakwani-Podder (1973) methods produced
relatively poor results for the medium and high income groups, but showed good
result for the poorest group (z[1 0.01). The methods of (17) and (18) are based
on the polynomial series expansion of the log share function and their
performance will not be good for the very end points.

7. Lorenz dominance effect may not be observed

For the Gini coefficients beginning from 0.2, 0.25,...., 0.55, corresponding
share functions can be derived using the above ME estimation method of pdf.
The Gini range corresponds to the observed range of Gini coefficients for 57
countries of the World Development Report. All income distributions will be
shown to have relatively the same standard shape. Fig.11 and Fig. 12 show the
share functions and the Lorenz curves. The two Lorenz curves do not cross at
the center points. The gap between two different Lorenz curves initially
increases and then decreases near the end point.

The validity of the above claim (two different Lorenz curves do not meet at
the center point) depends on the accuracy of the estimation method of the share
functions and corresponding Lorenz curves. However, the first 8 moments
estimated from the Gini coefficient can be inaccurate and the neglect of higher
order moments (higher than 8™ moment) can lead to inaccuracy.
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Fig.11 Comparison of share functions derived from various Ginies
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Fig.12 Comparison of Lorenz curves derived from various Ginies
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8. Redundancy of the Scalar Polarization Index

The scalar polarization index introduced by Estaban and Ray (1994) and
Wolfson (1994) is useful only for the theoretical imagination. If the underlying
density function has a bimodal form (two maximum values), then the Gini
coefficient and the scalar polarization index can move along opposite directions.
However, if the underlying density function has a single maximum, then both the
Gini coefficient and scalar index will move along the same direction. Therefore,
the scalar polarization index may not be necessary to explain the changes of the
real world income distributions if the observed income distribution has a single
maximum point. It is proved by showing two Lorenz curves do not meet or do
not come closer at the center point.

The following example shows a case where the scalar polarization index is
necessary because the Gini coefficient is insufficient to describe the income
changes of a group. Suppose there are six persons inside the group and each
person has income of $1, $2, $3, $4, $5, and $6. As a way of income
redistribution the third person gives $1 to the first person and similarly sixth
person gives one dollar to the fourth person. The Gini coefficient decreased from
0.278 to 0.214 and it seems as if the income distribution improves; however, the
scalar polarization index (which will be defined later) increased from 0.3 to 0.428.
Therefore, society is divided into two groups and income distribution is polarized.

Fig13. Income Distribution before Income Transfer Fig14. Income Distribution after Income Transfer
7 5.5
6 5.0
5| 4.5
4.0
4]
3.5
3
3.0
2] 2.5
, L1 I
0 T T T T T T 15 T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
‘I:I BEFORE_INCOME ‘I:I AFTER_INCOME
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Frequency before income shift

Fig.15 Income Frequency before Income Shift
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3.2

Fig.16 Income Frequency after Income Shift
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Figures 13 and 14 show the amount of income before and after the income shift.
Figures 15 and 16 show the income shares before and after the income shift.
Figure 17 shows the Lorenz curves made of income shares before and after the
income shift.

Fig.17 Lorenz Curves Before and After Income Shift Fig.18 Wolfson Index
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Wolfson (1994) defined the scalar polarization index arbitrarily. The word
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arbitrarily is used to modify the index to have a range between zero and one.

N Es
P=4P* and P*= M, where mtan= "% 3D
mtan u
Rewrite it as
P=2105-1(05) —05Gini| 32)

where T—0.5*Gini is the two triangular area between the Lorenz curve and
stared broken line (***) in Fig.18. Note m is the median income and / is the
mean income. The median tangent 7/ is the slope of tangent to the Lorenz
curve at the 50t population percentile. Let there be N persons and Az=1/N.
Let M= Nu be the total income of the society.

The median income [ m
O M*(the slope of tangent to the Lorenz curve at the 50th population
percentile) *Az
[0 M*(share of person at the 50t population percentile)
where MAz=M/N=yu is used.
Hence, the slope of the tangent to the Lorenz curve at the 50™ population
percentiled m/u

Fig.19 Comparison of Lorenz curves A (Gini 0 0.3) and B (Gini 0 0.55)
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The gap between the Lorenz curves A and B initially increases and then
decreases for z=[0, 1]. The scalar polarization index is

P="%105—L(05)—0.5Gini .

When the Gini coefficient increases from 0.3 to 0.55, [0.5—L (0.5)] increases by
the square area made of two lines (+++ and 000) in Fig.19. In addition,
[0.5—L(0.5) —0.5Gini] increases because the starred square is bigger than the
gap between two Lorenz curves. If the median value is smaller for Gini 0.55
case, then tangent value (u/m) is bigger for Gini 0.55 and P increases as Gini
has increased. The assumption for this conclusion was that the gap between the
Lorenz curves increases initially and decreases monotonically. However, the
scalar polarization index and the Gini coefficient will move along the opposite
direction if two Lorenz curves meet at the center point as shown in Fig.17. The
square made of two lines (+++ and 000) will be zero in this case. If two Lorenz
curves meet at the center, the slope of the inner Lorenz curve (which
corresponds to the share function) should change rapidly near the meeting point
as in Fig. 17 and the number of persons belonging to this share (or income) is
small. It means the income distribution will have a minimum near the center
point and few persons are positioned around the medium income range. Such
extreme distribution is hard to find in the real world because observed income
distributions have a fat right tail distribution with a single maximum, but with no
minimum near the center point. The following Fig. 20 shows U.S. CPS data of
1990 family income. It has a single maximum value.

Fig. 20 U.S. Income Histogram
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If no minimum value is observed near the medium income point, then the scalar
polarization index will move along the same direction as the Gini coefficient
changes. Fig.21 shows the movement of Korean family income from 1990 to
2009. Both indices move along the same direction and the scalar polarization
index showed no particular extra information.

Fig. 21 Comparison of Korean Gini and Wolfson indices (Year 1990=100)
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9. The share function derived by the maximum entropy
method describes income shares of the poorest group
fairly well.

The Gini coefficient was often criticized for the inability to describe income
share changes of the poorest group accurately. See Ryu and Slottje (1996,
1998). However, Bonferroni (1930) and Ryu (2008) explain the Bonferroni
index that describes the changes of the poorest group relatively well.

The area contribution to the Gini coefficient from the accumulated income
shares of the poorest group is so small that the changes of the income shares of
the poorest group derived from the small changes of the Gini coefficient may be
difficult to catch. However, the share functions derived in this paper clearly
show how income shares of the poorest decrease when the Gini coefficient
increases.
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Table 3: Estimated share functions for various values of Gini coefficients

Gini[] 0.2 Gini[] 0.25 GiniJ 0.3 GinilJ 0.35
20 0.005 0.004131156 0.003505265 0.002913465 0.002356813
20 0.015 0.004266775 0.003643756 0.00304936 0.002484685
20 0.025 0.004402431 0.003782277 0.003185563 0.002613357
20 0.035 0.004537975 0.003920607 0.003321787 0.002742495
20 0.045 0.004673267 0.004058536 0.003457756 0.002871773
20 0.055 0.004808169 0.004195864 0.003593205 0.003000883
200 0.065 0.004942553 0.004332401 0.003727888 0.003129529
20 0.075 0.005076296 0.004467972 0.003861575 0.003257436
20 0.085 0.005209283 0.004602416 0.003994052 0.003384349
20 0.095 0.005341407 0.004735583 0.004125128 0.003510037
GiniJ 0.4 GiniJ 0.45 GiniJ 0.5 GiniJ 0.55
20 0.005 0.001834136 0.001343614 0.0008846485 0.0004633178
20 0.015 0.001949074 0.00144138 0.0009615506 0.0005154733
20 0.025 0.002065422 0.001541206 0.001041132 0.0005707808
20 0.035 0.002182833 0.001642773 0.001123152 0.0006291421
20 0.045 0.002300966 0.001745762 0.001207356 0.0006904352
20 0.055 0.00241949 0.001849856 0.001293484 0.0007545172
20 0.065 0.002538088 0.001954744 0.00138127 0.0008212273
20 0.075 0.002656459 0.002060127 0.00147045 0.0008903898
20 0.085 0.002774321 0.002165719 0.001560762 0.0009618175
200 0.095 0.002891415 0.002271251 0.001651954 0.001035315

10. Conclusion and Summarizing Remarks

In this paper, the usefulness of the Gini coefficient is reemphasized. The
knowledge of the Gini coefficient is equivalent to the knowledge of the first
moment of the share function. Beginning from the first moment, higher
moments can be estimated with a high accuracy with regression equations
derived for the quintile data of 57 countries reported in the World Development
Report (2011).
underlying income distributions can be estimated with the maximum entropy
method of Ryu (1993).

systematic pattern since income distributions are derived only from the given

Once higher moments (up to 8™ moments) are known,

The derived functional forms follow a relatively
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Gini coefficients. Two Lorenz curves corresponding to different Gini coefficients
will not meet at the center that the Lorenz dominance effect will not be observed.
Furthermore, the Gini coefficient and the scalar polarization index of Wolfson
(1994) will move toward the same direction for the 57 countries reported in the
World Development Report (2011) that the scalar polarization index may be a
redundant measure once the Gini coefficient is given. These results came from
a comparison of approximated Lorenz curves but not from a comparison of
empirical Lorenz curves.

The motivation for deriving the share function and corresponding Lorenz
curves from the Gini coefficients are following. If raw data is available, no need
to consider the functional form of the Lorenz curves. If quintile data is available
then use the quadratic extension method described in (9)—-(12) or use the higher
moments described in (17) and the maximum entropy method of (28) to derive
the share functions and the Lorenz curves. However, if we want to summarize
the raw data with one number (inequality measure) then the Gini coefficient is an
excellent measure because this measure carries most of the raw data information
such that reasonable reproduction of the share function is possible. Though the
Lorenz curve derived from the Gini coefficient will not be the most accurate one
because only one summary measure is used, it will have some standard shape.
If two numbers are allowed to summarize the raw data, Yitzhaki (1998) showed
that approximation of poor or rich income groups can be improved. If many
numbers are allowed to summarize the raw data, Ryu and Slottje (1996) used
orthonormal basis coefficient to summarize the raw data. Quintile data is another
way to summarize the raw data. The whole point is that if a good approximation
can be derived from one summary measure (the Gini coefficient in this case),
then it will have the standard shape of income distributions. Any correction due
to extra information will be minor correction to the standard shape.

There are several limitations in applying the method of this paper for
practical purposes. 1) The data reported in the World Development Report
(2011) is not current for some unknown reason. The reported years are
different for different countries. 2) It will be convenient if the income
distribution can be derived directly from the given Gini coefficient; however, the
method introduced in this paper requires a sequence of calculations. a) The
higher moments of distribution are estimated from the given Gini coefficient, b)
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the parameters of the share functions are estimated (subject to the given
moments) and then c¢) income distribution is derived with the estimated
parameters.

In the future, several remaining questions can be analyzed. Different
countries are at different development stages. Why do income distributions of
different countries have the similar shapes that depend only on the Gini
coefficients? Why do higher moments of the income share function depend only
on the first moment (which is equivalent to knowledge of the Gini coefficients)?
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