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Remarks on the behavior of characteristic functions at the origin

Ohkubo Hikaru

(Received October 1, 2012)

Summary. Some results are obtained that deal with the remainder term
of limited expansion in powers of characteristic functions.

1. Main results.
Let f(t) be the characteristic function of a distribution function F (x). Boas

[1] investigated the behavior of f(t) in a neighbourhood of the origin, and found
a condition on F (x) in order that

� 1

0 |f(t)− 1|t−p−1dt <∞ with 0 � p < 1 as well
as one in order that lim supt→0+t−p|f(t)− 1|<∞ with 0 < p < 1. The purpose of
this paper is to generalize Boas’ results by establishing the following theorems.

Theorem 1 Let p > 0 that is not an integer, and let m denote the maximum
integer less than p. (i) In order that there exist some constants a0, a1, . . . , am

for which

f(t) −
m�

j=0

ajtj = o(|t|p) as t → 0, (1.1)

it is necessary and sufficient that

1 − F (x) + F (−x) = o(x−p) as x → ∞. (1.2)

In the case, aj = f (j)(0)/j ! for j =0, 1, . . . , m. The assertion remains valid if
o is replaced by O. (ii) In order that there exist some constants a0, a1, . . . , am

for which
�

|t|�1

��f(t)−
m�

j=0

ajtj
��|t|−p−1dt < ∞, (1.3)
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(2)

it is necessary and sufficient that
� ∞

−∞
|x|pdF (x) < ∞. (1.4)

In the case, aj = f (j)(0)/j ! for j =0, 1, . . . , m.

Assertion (i) of the theorem has been established by Wolfe [6].

Theorem 2 Let 2k be a nonnegative even integer. (i) In order that there
exist some constants a0, a1, . . . , a2k for which

f(t)−
2k�

j=0

ajtj = o(t2k) as t → 0, (1.5)

it is necessary and sufficient that
� ∞

−∞
x2kdF (x) < ∞. (1.6)

In the case, aj = f (j)(0)/j ! for j =0, 1, . . . , 2k. (ii) In order that there exist
some constants a0, a1, . . . , a2k for which

�

|t|�1

��f(t)−
2k�

j=0

ajtj
��|t|−2k−1dt < ∞, (1.7)

it is necessary and sufficient that
�

|x|>1

x2k log |x|dF (x) < ∞. (1.8)

In the case, aj = f (j)(0)/j ! for j =0, 1, . . . , 2k.

Assertion (i) of the theorem includes the result in Cramèr [2] p. 90, which gives
a necessary and sufficient condition on F (x) for the existence of even derivatives
of f(t) at the origin.

Theorem 3 Let m be a positive odd integer. (i) In order that there exist
some constants a0, a1, . . . , am for which

f(t)−
m�

j=0

ajtj = o(|t|m) as t → 0, (1.9)
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it is necessary and sufficient that

1 − F (x) + F (−x) = o(x−m) as x → ∞ (1.10)

and further that there exists a constant γ for which
� x

−x

umdF (u) − γ = o(1) as x → ∞. (1.11)

In the case, f (m)(0)= imγ and aj = f (j)(0)/j ! for j =0, 1, . . . , m. (ii) In order
that there exist some constants a0, a1, . . . , am for which

�

|t|�1

��f(t) −
m�

j=0

ajtj
��|t|−m−1dt < ∞, (1.12)

it is necessary and sufficient that
� ∞

−∞
|x|mdF (x) < ∞ (1.13)

and further that
� ∞

1

��
�

|u|>x

umdF (u)
��d log x < ∞. (1.14)

In the case, aj = f (j)(0)/j ! for j =0, 1, . . . , m.

Assertion (i) of the theorem includes the theorem of Pitman [5], which gives a
necessary and sufficient condition on F (x) for the existence of odd derivatives
of f(t) at the origin.

Remarks. (i) The function T∗(x)= 1−F (x)−F (−x), x > 0, is called the
tail difference of F (x). As is easily seen,

� x

−xumdF (u)=− � x

0 umdT∗(u). If F (x)
satisfies (1.13) and if

� ∞

1

xm log x |dT∗(x)| < ∞, (1.15)

then F (x) satisfies (1.14) and

lim
N→∞

�

1<|x|�N

xm log |x| dF (x) exists finitely. (1.16)

3
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(4)

Conversely, (1.15) is derived from (1.14) or (1.16) when T∗(x) is nonincreasing
over an unbounded interval of the positive axis or, equivalently, F (−I)� F (I)
for every interval I contained in the unbounded interval. Hence, on the assump-
tion that F (x) has the moment of order m and that T∗(x) is monotone over an
unbounded interval of the positive axis, conditions (1.14)–(1.16) are equivalent
to each other.

(ii) When F (x) is concentrated on the positive axis, a necessary and sufficient
condition for (1.9) is that

� ∞

0

xmdF (x) < ∞, (1.17)

while a necessary and sufficient condition for (1.12) is that
� ∞

1

xm log x dF (x) < ∞. (1.18)

Actually, in the case, condition (1.17) is equivalent to (1.11) and implies (1.10),
while condition (1.18) is equivalent to (1.14) and implies (1.13).

(iii) When F (x) is symmetric with respect to the origin, conditions (1.11) and
(1.14) may be omitted since in the case those conditions are trivially satisfied.

Condition (1.13) implies (1.10) and (1.11). Conversely, (1.13) is implied by
(1.11) if m is an even integer. The condition that

�
|x|>1

|x|m log |x|dF (x)< ∞
implies (1.13) and (1.14). Conversely, this condition is implied by (1.14) if m is
an even integer. Thus Theorem 3 is still true for nonnegative even integers m
and is reduced to Theorem 2 in the case.

If o were replaced by O in the statements of assertion (i) of Theorem 3 with
an even or odd integer m, then that assertion is no longer valid. For the validity
of that assertion with O in place of o, its statements should be modified as in
follows:

Theorem 4 Let m be a positive integer. In order that there exist some
constants a0, a1, . . . , am−1 for which

f(t) −
m−1�
j=0

ajtj = O(|t|m) as t → 0, (1.19)

it is necessary and sufficient that

1 − F (x) + F (−x) = O(x−m) as x → ∞ (1.20)

4
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and further that

� x

−x

umdF (u) = O(1) as x → ∞. (1.21)

In the case, aj = f (j)(0)/j ! for j =0, 1, . . . , m− 1.

In consequence of the theorem, condition (1.19) is equivalent to (1.9) when m
is an even integer or F (x) is concentrated on the positive axis.

Notice that �f(t) is the characteristic function of the symmetric distribution
function (F (x)+ 1−F (−x−0))/2. Hence the following corollary is obtained as
an immediate consequence of Theorems 1, 3, and 4.

Corollary Let p > 0 that is not an even integer, and let 2k denote the
maximum even integer less than p. (i) In order that there exist some constants
a0, a2, . . . , a2k for which

�f(t)−
k�

j=0

a2jt2j = o(tp) as t → 0+, (1.22)

it is necessary and sufficient that

1 − F (x) + F (−x) = o(x−p) as x → ∞. (1.23)

In the case, a2j = f (2j)(0)/(2j)! for j =0, 1, . . . , k. The assertion remains valid
if o is replaced by O. (ii) In order that there exist some constants a0, a2, . . . , a2k

for which

� 1

0

���f(t)−
k�

j=0

a2jt2j
��t−p−1dt < ∞, (1.24)

it is necessary and sufficient that

� ∞

−∞
|x|pdF (x) < ∞. (1.25)

In the case, a2j = f (2j)(0)/(2j)! for j =0, 1, . . . , k.

5
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(6)

2. Some lemmas.
As is well known, if F (x) has the moment of integral order n > 0, then f(t)

is n times differentiable at every point,

lim
t→0

1
tn

���f(t) −
n�

j=0

f j(0)
j !

tj
��� = 0, (2.1)

and

f(t) −
n�

j=0

f (j)(0)
j !

tj =
1

Γ (n)

� t

0

(t−u)n−1
�
f (n)(u) − f (n)(0)

�
du (2.2)

for all t. When n is an even integer, the latter equation yields that

����f(t) −
n/2�
j=0

f (2j)(0)
(2j)!

t2j
��� =

1
Γ (n)

� t

0

(t−u)n−1
���f (n)(u) − f (n)(0)

��du, (2.3)

because �f (n)(u)− f (n)(0) is a function of constant sign.
On the other hand, the following inequalities hold: for all t > 0,

1 −�f(t) � t2

3

�

|x|�1/t

x2dF (x), (2.4)

1
t

� t

0

�
1 −�f(u)

�
du � 1

7

�

|x|>1/t

dF (x), (2.5)

1
t

� t

0

�
1 −�f(u)

�
du � t2

9

�

|x|�1/t

x2dF (x). (2.6)

For the proof of the first two inequalities, refer to Loève [4] p. 196 or Kawata [3]
p. 101. The last inequality is an immediate consequence of the first. In addition
to these inequalities, we observe here that

1
α

� ∞

0

�
1 −�f(u)

�
dΦ(u) � 1

7

�

|x|>0

��Φ(1/|x|)��dF (x) (2.7)

6
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for any nondecreasing absolutely continuous function Φ(t) defined on the interval
(0,∞) with Φ(∞)= 0 for which tαΦ�(t) is nonincreasing for some α > 0. In fact,
it follows at once from (2.5) that

� ∞

0

t−1dΦ(t)
� t

0

�
1 −�f(u)

�
du � 1

7

� ∞

0

dΦ(t)
�

|x|>1/t

dF (x). (2.8)

Exchange the order of integrals in each of the iterated integrals, and we have
� ∞

0

�
1 −�f(u)

�
du

� ∞

u

t−1dΦ(t) � 1
7

�

|x|>0

dF (x)
� ∞

1/|x|
dΦ(t). (2.9)

The right hand side equals that of (2.7), while the inner integral of the iterated
integral on the left hand side is

=
� ∞

u

tαΦ�(t)t−1−αdt � uαΦ�(u)
� ∞

u

t−1−αdt = Φ�(u)/α. (2.10)

Thereby (2.7) is established. Inequality (2.7) leads to Lemma 2 later.

Lemma 1 Let 2k be a positive even integer. If

lim inf
t→0+

1
t2k

���f(t) −
k−1�
j=0

a2jt2j
�� < ∞ (2.11)

for some constants a0, a2, . . . , a2k−2, then F (x) has the moment of order 2k.

Proof. We prove the lemma by the induction. When k =1, the truth of the
lemma follows from (2.4). Now, on the assumption that the lemma is valid for
some positive integer k, we show that F (x) has the moment of order 2k +2 if

lim inf
t→0+

1
t2k+2

���f(t)−
k�

j=0

a2jt2j
�� < ∞. (2.12)

Since (2.12) implies

lim inf
t→0+

1
t2k

���f(t) −
k�

j=0

a2jt2j
�� = 0, (2.13)

7
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(8)

it follows that

lim inf
t→0+

1
t2k

���f(t) −
k−1�
j=0

a2jt2j
�� � |a2k|. (2.14)

Therefore, by the assumption, F (x) has the moment of order 2k. Besides, we
easily see by virtue of (2.13) and (2.1) that a2j = f (2j)(0)/(2j)! for j =0, 1, . . . , k.
Hence equation (2.3) ensures that (2.12) leads to

lim inf
t→0+

1
t2k+2

� t

0

(t− u)2k−1
���f (2k)(u)− f (2k)(0)

��du < ∞, (2.15)

in which t−u � t/2 for u ∈ (0, t/2). Therefore

lim inf
t→0+

1
t3

� t

0

���f (2k)(u)− f (2k)(0)
��du < ∞, (2.16)

which together with (2.6) deduces the existence of the moment of F (x) of order
2k +2. This completes the proof of the lemma.

Remarks. Similar arguments as in the proof of Lemma 1 deduce that F (x)
should be degenerate at the origin if

lim inf
t→0+

1
t2k

���f(t)−
k−1�
j=0

a2jt2j
�� = 0 (2.17)

for some positive even integer 2k and for some constants a0, a2, . . . , a2k−2.

Lemma 2 (i) The inequality

� 1

0

�
1 −�f(u)

�
u−1du � 1

7

�

|x|>1

log |x|dF (x) (2.18)

holds if the integral on the right hand side exists finitely. (ii) The inequality
� ∞

0

�
1 −�f(u)

�
u−p−1du � 1

7

� ∞

−∞
|x|pdF (x) (2.19)

holds for 0 < p < 2 if the integral on the right hand side exists finitely.

8
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Proof. Apply (2.7) with Φ(t)= min{log t, 0} and α =1 or Φ(t)=−t−p and
α = p +1.

Remarks. Inequality (2.19) remains true even where p � 2. However, F (x)
should be degenerate at the origin if the integral on the left hand side of (2.19)
is finite for some p � 2. As a matter of fact, the finiteness of that integral
implies that lim inft→0+ t−p(1−�f(t))= 0, whereas (2.4) includes the fact that
F ({0}) =1 if lim inft→0+ t−2(1−�f(t))=0.

Let now n be a positive integer, and write

Mn(λ) =
1

λn

�

|x|�λ

|x|ndF (x) +
�

|x|>λ

dF (x) (2.20)

for λ > 0. We then see that

��f(t)− 1
�� � 2 M1(1/t) and

��f(t)− 1− it

�

|x|�1/t

xdF (x)
�� � 2 M2(1/t) (2.21)

for all t > 0, since |eiθ − 1|� |θ| and |eiθ − 1− iθ|� θ2/2 for all real numbers θ
bounded by 1. The function Mn(λ) admits the representation

Mn(λ) =
1

λn

� λ

0

T (x)dxn (2.22)

by means of integration by parts. Here T (x)=1−F (x)+ F (−x− 0) for x � 0,
the tail sum of F (x).

Lemma 3 (i) Suppose that

1−F (x)+ F (−x) = o(x−p) as x → ∞ (2.23)

for some 0 < p � 1. If 0 < p < 1, then

f(t) − 1 = o(tp) as t → 0+. (2.24)

If p =1, then

f(t)− 1 − it

�

|x|�1/t

xdF (x) = o(t) as t → 0+. (2.25)

9
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(10)

The assertion remains true if o is replaced by O. (ii) Suppose that
�

|x|>1

max{log |x|, |x|p}dF (x) < ∞ (2.26)

for some 0 �p � 1. If 0 � p < 1, then
� 1

0

��f(t)− 1
��t−p−1dt < ∞. (2.27)

If p =1, then
� 1

0

��f(t)− 1 − it

�

|x|�1/t

xdF (x)
��t−2dt < ∞. (2.28)

Proof. Throughout the proof, let n be an integer such that n > p. (i) Write
Q(x)= xpT (x) for x > 0. Given N > 0, we have by virtue of (2.22) that

Mn(1/t) = tn

� N

0

T (x)dxn + tn

� 1/t

N

Q(x)x−pdxn (2.29)

for all t < 1/N . Consequently,

Mn(1/t)t−p � Nntn−p + sup
x�N

Q(x)tn−p

� 1/t

0

x−pdxn

= Nntn−p +
n

n− p
sup
x�N

Q(x). (2.30)

Letting t→ 0+ and then N →∞, we obtain

lim sup
t→0+

Mn(1/t)t−p � n

n− p
lim sup

x→∞
xpT (x). (2.31)

Hence (i) follows from (2.21). (ii) We have
� 1

0

Mn(1/t)t−p−1dt

=
� 1

0

tn−p−1dt

�

|x|�1/t

|x|ndF (x) +
� 1

0

t−p−1dt

�

|x|>1/t

dF (x). (2.32)

10
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The first summand of (2.32) is

=
� 1

0

tn−p−1dt

�

|x|�1

|x|ndF (x) +
�

|x|>1

|x|ndF (x)
� 1/|x|

0

tn−p−1dt

=
1

n− p

�

|x|�1

|x|ndF (x) +
1

n− p

�

|x|>1

|x|pdF (x), (2.33)

while the second is

=
�

|x|>1

dF (x)
� 1

1/|x|
t−p−1dt =

1
p

�

|x|>1

(|x|p−1)dF (x) (2.34)

when p> 0. Consequently,
� 1

0

Mn(1/t)t−p−1dt � 1
n− p

+
n

p (n− p)

�

|x|>1

|x|pdF (x). (2.35)

When p=0, the last summand on the right hand side should be replaced with�
|x|>1

log |x|dF (x). Hence (ii) follows from (2.21). This completes the proof of
the lemma.

Lemma 4 Suppose that F (x) has the moment of integral order m� 0, and
write

R(t) = f(t) −
m�

j=0

f (j)(0)
j !

tj − (it)m+1

(m+1)!

�

|x|�1/t

xm+1dF (x) (2.36)

for t> 0. (i) If

1 − F (x) + F (−x) = o(x−m−1) as x → ∞, (2.37)

then

R(t) = o(tm+1) as t → 0+. (2.38)

The assertion remains true if o is replaced by O. (ii) If
� ∞

−∞
|x|m+1dF (x) < ∞, (2.39)

11
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then
� 1

0

|R(t)|t−m−2dt < ∞. (2.40)

Proof. The special case of the lemma with m=0 is included in Lemma 3.
Let m� 1. It can be shown that

1
Γ (m)

� t

0

(t− u)m−1
�
u

�

|x|�1/u

xm+1dF (x)
�
du

=
tm+1

(m+1)!

�

|x|�1/t

xm+1dF (x) +
1

(m+1)!

�

|x|>1/t

(sgn x)m+1 dF (x). (2.41)

If we write

A(u) = f (m)(u) − f (m)(0) − im+1u

�

|x|�1/u

xm+1dF (x), (2.42)

then we have by (2.2) and (2.41) that
��� 1
Γ (m)

� t

0

(t− u)m−1A(u)du−R(t)
��� � 1

(m+1)!

�

|x|>1/t

dF (x) (2.43)

for all t> 0. (i) If F (x) satisfies (2.37), then it follows from Lemma 3 (i) that
A(u)= o(u) as u→ 0+ and hence

� t

0

(t− u)m−1
��A(u)

��du � 1
m

max
0�u�t

��A(u)
�� tm = o(tm+1) as t → 0+. (2.44)

The truth of (2.38) is thereby derived from (2.43). The arguments above with
O in place of o remain true. (ii) If F (x) satisfies (2.39), then it follows from
Lemma 3 (ii) that

� 1

0
|A(u)|u−2du<∞ and hence

� 1

0

t−m−2dt

� t

0

(t− u)m−1
��A(u)

��du =
� 1

0

��A(u)
��du

� 1

u

t−m−2(t− u)m−1dt

=
� 1

0

��A(u)
��u−2du

� 1

u

s(1 − s)m−1ds � 1
m(m+1)

� 1

0

��A(u)
��u−2du < ∞. (2.45)

The truth of (2.40) is thereby derived from (2.43). This completes the proof of
the lemma.

12
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3. Proofs of Theorems.
Proof of Theorem 1.
Let p> 0 that is not an integer, and let 2k denote the maximum even integer

less than p.
(i) Suppose (1.1). Then, since

�f(t)−
k�

j=0

a2jt
2j = o(tp) as t → 0+, (3.1)

it follows at once from Lemma 1 that F (x) has the moment of order 2k and from
(2.1) that a2j = f (2j)(0)/(2j)! for j =0, 1, . . . , k. Recall (2.3), and we obtain

� t

0

(t− u)2k−1
���f (2k)(u) − f (2k)(0)

��du = o(tp) as t → 0+ (3.2)

when k > 0. The integral is

�
� t

2

�2k−1
� t/2

0

���f (2k)(u) − f (2k)(0)
��du. (3.3)

Consequently,

1
t

� t

0

���f (2k)(u) − f (2k)(0)
��du = o(tp−2k) as t → 0+. (3.4)

When k=0, this fact directly follows from (3.1). Write F2k(x)=
� x

−∞u2kdF (u),
and we have by (2.5) that

�

|x|>1/t

dF2k(x) = o(tp−2k) as t → 0+, (3.5)

which implies (1.2). Thereby (1.2) is deduced from (1.1).
Suppose conversely (1.2). It is easily seen that F (x) has the moment of order

m and that
�
|u|>x

|u|mdF (u)= o(x−(p−m)) as x→∞. Apply Lemma 3 (i), and
we have

f (m)(t)− f (m)(0)= o(|t|p−m) as t→ 0. (3.6)

13
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When m> 0, it follows from (2.2) that

��f(t) −
m�

j=0

f (j)(0)
j !

tj
��

� 1
Γ (m)

� t

0

(t− u)m−1
��f (m)(u) − f (m)(0)

��du

� 1
Γ (m+1)

max
0�u�t

��f (m)(u) − f (m)(0)
��tm, (3.7)

which implies the truth of (1.1) with f (j)(0)/j ! in place of aj for j =0, 1, . . . ,m.
Thereby (1.1) is deduced from (1.2). Evidently, constants a0, a1, . . . , am in (1.1)
are uniquely determined. The arguments above remain true if o is replaced by
O.

(ii) Suppose (1.3). Then, since

� 1

0

|�f(t)−
k�

j=0

a2jt
2j |t−p−1dt < ∞, (3.8)

it follows at once from Lemma 1 that F (x) has the moment of order 2k and from
(2.1) that a2j = f (2j)(0)/(2j)! for j =0, 1, . . . , k. Recall (2.2), and we obtain

� 1

0

t−p−1dt

� t

0

(t− u)2k−1
���f (2k)(u) − f (2k)(0)

��du < ∞ (3.9)

when k > 0. The iterated integral is

=
� 1

0

���f (2k)(u) − f (2k)(0)
��du

� 1

u

t−p−1(t− u)2k−1dt

=
� 1

0

���f (2k)(u) − f (2k)(0)
��u−(p−2k)−1du

� 1

u

sp−2k(1− s)2k−1ds

� C

� 1/2

0

���f (2k)(u) − f (2k)(0)
��u−(p−2k)−1du, (3.10)

where C =
� 1

1/2
sp−2k(1− s)2k−1ds. Consequently,

� 1

0

���f (2k)(u) − f (2k)(0)
��u−(p−2k)−1du < ∞. (3.11)

14
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When k=0, this fact is equivalent to (3.8). Let F2k(x) be the same as before.
It then follows from Lemma 2 (ii) that

�

|x|>1

|x|p−2k dF2k(x) < ∞, (3.12)

which implies (1.4). Thereby (1.4) is deduced from (1.3).
Suppose conversely (1.4). Then, since F (x) has the moment of order m and� ∞

−∞|x|p−m|x|mdF (x)<∞, applying Lemma 3 (ii) yields that

� 1

0

��f (m)(u) − f (m)(0)
��u−(p−m)−1du < ∞. (3.13)

When m> 0, it follows from (2.2) that

� 1

0

��f(t) −
m�

j=0

f (j)(0)
j !

tj
��t−p−1dt

� 1
Γ (m)

� 1

0

t−p−1dt

� t

0

(t− u)m−1
��f (m)(u) − f (m)(0)

��du

=
1

Γ (m)

� 1

0

��f (m)(u) − f (m)(0)
��du

� 1

u

t−p−1(t− u)m−1dt

� B(p−m+1, m)
Γ (m)

� 1

0

��f (m)(u) − f (m)(0)
��u−(p−m)−1du, (3.14)

which implies the truth of (1.3) with f (j)(0)/j ! in place of aj for j =0, 1, . . . ,m.
Thereby (1.3) is deduced from (1.4). Evidently, constants a0, a1, . . . , am in (1.3)
are uniquely determined. We thus have completed the proof of Theorem 1.

Proof of Theorem 2.
Assertion (i) of the theorem is substantially included in Lemma 1. On the

other hand, assertion (ii) of the theorem is proved in a similar way as in the
proof of the preceding theorem with p=2k, a nonnegative even integer. As a
matter of course, (3.12) should be replaced by

�

|x|>1

log |x|dF2k(x) < ∞, (3.15)

while (3.13) with p=2k=m should be derived from (3.15).

15
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(16)

Proof of Theorem 3.
Throughout the proof, we write Fm−1(x)=

� x

−∞um−1dF (u) when F (x) has
the moment of order m− 1.

(i) Suppose (1.9). It readily follows from Theorem 2 (i) that F (x) has the
moment of order m− 1 and aj = f (j)(0)/j ! for j =0, 1, . . . ,m− 1. Hence (1.9)
is in turn

f(t) −
m−1�
j=0

f (j)(0)
j !

tj − amtm = o(|t|m) as t → 0. (3.16)

Besides, the same argument as in obtaining (3.5) yields that
�

|x|>1/t

dFm−1(x) = o(t) as t → 0+. (3.17)

Evidently, (3.17) implies (1.10). Apply Lemma 4 (i), and we have

f(t) −
m−1�
j=0

f (j)(0)
j !

tj − (it)m

m !

�

|x|�1/t

xmdF (x) = o(tm) as t → 0+, (3.18)

which together with (3.16) yields that

im

m !

�

|x|�1/t

xmdF (x) − am = o(1) as t → 0+. (3.19)

Hence (1.11) is true with γ =m ! am/im. Thereby (1.10) and (1.11) are deduced
from (1.9).

Suppose conversely (1.10) and (1.11). We then have
�

|u|>x

dFm−1(u) = o(x−1) as x → ∞ (3.20)

and
�

|x|�1/t

xdFm−1(x) − γ = o(1) as t → 0+. (3.21)

16
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It therefore follows from Lemma 3 (i) that

f (m−1)(t) − f (m−1)(0) − imγ t = o(|t|) as t → 0, (3.22)

which means that f (m−1)(t) is differentiable at the origin and f (m)(0)= imγ.
Hence equation (2.2) deduces the truth of (1.9) with f (j)(0)/j ! in place of aj

for j =0, 1, . . . ,m. Thereby (1.9) is deduced from (1.10) and (1.11). Evidently,
constants a0, a1, . . . , am in (1.9) are uniquely determined.

(ii) Suppose (1.12). It readily follows from Theorem 2 (ii) that F (x) has the
moment of order m− 1 and aj = f (j)(0)/j ! for j =0, 1, . . . ,m− 1. Hence (1.12)
is in turn

�

|t|�1

|f(t)−
m−1�
j=0

f (j)(0)
j !

tj − amtm| |t|−m−1dt < ∞ (3.23)

Besides, the same argument as in obtaining (3.12) yields that
�

|x|>1

|x|dFm−1(x) < ∞. (3.24)

Evidently, (3.24) implies (1.13). Apply Lemma 4 (ii), and we have

� 1

0

��f(t)−
m−1�
j=0

f (j)(0)
j !

tj − (it)m

m !

�

|x|�1/t

xmdF (x)
�� t−m−1dt < ∞, (3.25)

which together with (3.23) yields that

� 1

0

�� im
m !

�

|x|�1/t

xmdF (x) − am

��t−1dt < ∞. (3.26)

As is easily seen, am =(im/m !)
� ∞
−∞xm dF (x). Hence (1.14) is true. Thereby

(1.13) and (1.14) are deduced from (1.12).
Suppose conversely (1.13) and (1.14). We then have

� ∞

−∞
|x|dFm−1(x) < ∞ (3.27)

17
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(18)

and
� ∞

1

��
�

|x|�1/t

xdFm−1(x) − γ
��t−1dt < ∞ (3.28)

with γ =
� ∞
−∞xdFm−1(x)= f (m)(0)/im. Hence it follows from Lemma 3 (ii) that

� 1

0

��f (m−1)(t) − f (m−1)(0) − f (m)(0)t
��t−2dt < ∞. (3.29)

Hence equation (2.2) deduces the truth of (1.12) with f (j)(0)/j ! in place of aj

for j =0, 1, . . . , m. Thus (1.12) is deduced from (1.13) and (1.14). Evidently,
constants a0, a1, . . . , am in (1.12) are uniquely determined. We thereby have
completed the proof of Theorem 3.

Proof of Theorem 4.
The proof is carried out in the same way as in the proof of Theorem 2 or

Theorem 3 according as m is an even integer or an odd integer.
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